Magnetically Separable MoS2/Fe3O4/nZVI Nanocomposites for the Treatment of Wastewater Containing Cr(VI) and 4-Chlorophenol
نویسندگان
چکیده
منابع مشابه
Magnetically Separable MoS2/Fe3O4/nZVI Nanocomposites for the Treatment of Wastewater Containing Cr(VI) and 4-Chlorophenol
With a large specific surface area, high reactivity, and excellent adsorption properties, nano zerovalent iron (nZVI) can degrade a wide variety of contaminants in wastewater. However, aggregation, oxidation, and separation issues greatly impede its wide application. In this study, MoS₂/Fe₃O₄/nZVI nanocomposites were successfully synthesized by a facile step-by-step approach to overcome these p...
متن کاملcomparison of zoe and vitapex for canal treatment of necrotic primary teeth
چکیده ندارد.
15 صفحه اولSelf-Assembled AgNP-Containing Nanocomposites Constructed by Electrospinning as Efficient Dye Photocatalyst Materials for Wastewater Treatment
The design and self-assembly of graphene oxide (GO)-based composite membranes have attracted enormous attention due to their wide application in nanomaterial and environmental fields. In this work, we have successfully developed a strategy to fabricate new composite membranes based on poly(vinyl alcohol)/poly(acrylic acid)/carboxyl-functionalized graphene oxide modified with silver nanoparticle...
متن کاملMagnetically separable sulfur-doped SnFe2O4/graphene nanohybrids for effective photocatalytic purification of wastewater under visible light.
In this report, magnetically recoverable sulfur-doped SnFe2O4/graphene (S-SFO/GR) nanohybrids have been successfully developed via a facile solvothermal method. The characterizations on the structural, morphology, and optical properties of the nanohybrids indicate that S-SFO particles are successfully embedded on the GR nanosheets. The photocatalytic activity has been evaluated by photocatalyti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanomaterials
سال: 2017
ISSN: 2079-4991
DOI: 10.3390/nano7100303